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Asymptotic theory of high-aspect-ratio arched 
wings in steady incompressible flow 
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Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel 

(Received 7 October 1994 and in revised form 1 July 1995) 

Asymptotic theory of high-aspect-ratio wings in steady incompressible flow is extended 
to a case where the wing forms either an open or closed circular arc. The generalization 
is based on an integral formulation of the problem, which resembles the one used by 
Guermond (1990) for a plane curved wing. A second-order approximation is obtained 
for the load distribution on two model wings, one resembling that of a gliding 
parachute, and the other resembling a short duct. 

1. Introduction 
The asymptotic theory of high-aspect-ratio planar unswept wings in incompressible 

steady flow can be traced back to the pioneering words of Friderichs (1966) and Van 
Dyke (1975). Extensions of this theory for curved and swept wings were developed by 
Thurber (1965), Cheng (1978), Kida & Miyai (1978), Guermond (1990), and some 
others. We could not find any extension of this theory for arched (non-planar) wings, 
like those depicted in figures 1 and 2, although they are becoming quite common in 
aeronautical applications - for example, in gliding parachutes. Such an extension is the 
subject matter of this exposition. 

Given a finite wing in incompressible steady flow, an asymptotic solution for the 
pressure distribution over the wing can be obtained in two basic ways. One is by the 
method of matched asymptotic expansions, as, for example, that used by Van Dyke 
(1975). The other is by an asymptotic expansion of a boundary integral equation, as, 
for example, that used by Guermond (1990). It seems that the latter approach leads to 
simpler derivations and therefore will be preferred over the former. The following 
theory will be conceptually based on Guermond’s work, although we shall use a 
different boundary integral equation to avoid Hadamard-sense principal value 
integrals. 

2. The model 
Consider an infinitesimally thin wing positioned in a steady uniform flow of 

incompressible inviscid fluid.? An infinitesimally thin vortical wake is postulated to 
exist part the wing, starting at the trailing edge and extending to infinity. To avoid 
nonlinearity in formulation of the problem, the wake geometrical shape is assumed to 
be known a priori; specifically, it is assumed that vorticity is carried from the trailing 
edge of the wing along straight parallel lines, say, in the direction of the oncoming flow. 

t Since the problem is steady, the results obtained below can be readily adapted to the subsonic 
case by exploiting the similarity rule of Gothert (e.g. Ashley & Landahl 1965, pp. 124-126). 
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Let U,  p and b, be the flow velocity far form the wing, fluid density and maximal 
semi-chord of the wings. In subsequent derivations it will prove convenient to use 
dimensionless quantities, having b,, U,, $Uz  and b, U as units of length, velocity, 
pressure, and velocity potential respectlvely. Use of dimensionless quantities will be 
implicitly assumed hereafter. 

Select a right-handed Cartesian coordinate system with unit basis vectors e,, e,, e,, 
in such a way that the x-axis coincides with the direction of the oncoming flow (and, 
by assumption, with the direction of the wake past the wing). 

For some real positive s, the generalized semi-span, let b and x T E  be the semi-chord 
of the wing and the x-coordinate of the wing’s trailing edge, respectively, each 
continuous on [ - s, s] and analytic on (- s, s). 

Using spanwise and streamwise coordinates, the wing and wake surfaces can be 
defined on the rectangle EW!,, = [ - 1,1] x [ - s, s] and the stripe Zwake = (1 , co) x [ - s, s] 
by the vector-valued function r, = x, e, +y,  e ,  + z ,  e, = x, e, + r,,, such that 

for each (61>‘&-)€[-1? a ) x [ - s ~ , s I ,  x~(61,62) = x~~&)+b(62)(61-1)7 ( l )  

for each (6136,)‘(’7 [-s,s]? ‘f),(61762) = ‘f)Z(’>62)7 (2)  

for each (61>62)€[-1> 11 x [-S,SI, rp(61,62) = ry,(l,~,)+6Yg(~l,f[2). ( 3 )  

In ( 3 ) ,  6 is the maximal deviation of the wing’s mean camber surface from that formed 
by the direct extension of the wake, and rb = y s e , + z , e , ;  it is assumed that 8 is small 
compared with unity, whereas each of Ira/, (i3r,/i3f1( and ~Ir~/i3[~1 is of the order unity 
on (-1, 1)x(-s,s). 

Let ,M and p ,  each defined on [ - 1, co) x [ -s, s], be the potential and pressure jumps 
across the combined wing/wake surface. These two jumps are formally related by 

p = - 2 ( e z + v S ) . V , p  = -2(e ,+v , ) .  ,x- i,; :K2;1 (4) 

where V ,  is the surface gradient operator, v, is the average of the perturbation velocities 
on the two sides of the wing’s surface, and 

n = ar,/a[, x ar,/ag, ( 5 )  
is a local normal to the surface (see Baskin et al. 1976; also, Iosilevskii & Iosilevskii 
1994). 

As no pressure discontinuity can exist across the wake, equation (4) implies that p 
is constant along streamlines associated with velocity e, + v,. Retrospectively, by 
assuming that the wake extends in the direction of the oncoming flow, we have 
neglected y-  and z-components of 0, in the wake. In any event, under the present 
circumstances, 

for each (617t,>E(1,co)X[-sS,SI, , 4 [1762)  =/41762). (6) 

To ensure continuity of the potential in the immediate vicinity of the edges of the 
combined wing/wake surface, the value of the potential jump at the edges is assumed 
to be zero; specifically 

for each t 2 ~ [ - s , s ] ,  p(- l , & )  = 0, (7) 

(8) 
The last equation applies only in the case where the wing forms an open arc, i.e. when 
it has side edges. In the case where the wing forms a closed arc, i.e. when it resembles 
a duct or a ring, the zero on the right-hand side of (8) should be omitted. 

for each 6, E [ - 1, co), p(&, - s) = p(&, s) = 0. 
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From the Biot-Savart law it follows that for each (&, 5,) E (- 1, m) x (-s, s), 

where the bar across the integral sign indicates principal value in the Cauchy sense (see 
Baskin et al. 1976; also, Iosilevskii & Iosilevskii 1994). This equation, when used with 
the impermeability condition on the surface of the wing, 

for each ( t 1 , 5 2 ) E ( -  1 3 1 )  x(-s,s>, [e,+v,(tl,t,)l.n(tl,52) = 0, (10) 

yields what is commonly known as the boundary integral equation for  p. The objective 
of this exposition is to find a solution of this equation, subject to (6), (7) and (8), for 
an arched wing. Such a wing will be specified in the next section. In the interim we 
proceed by simplifying equation (9) under assumptions already made. 

Separate the wing and wake integration domains in equation (9). For the wake part, 
it follows from (l), (2) and (6) that for each (&, & ) E ( ~ , w )  x (-s,s), 

a(pu,r,> x---  Ar, - dp(1 2 5,) ax, e, x Aryz 
52)  IAr,l3 d52 

dry, = ryz(G, 52-ry,(l, t z ) ,  Ax, = 4 5 ; ,  t'2>-xs(t1, 5 2 1 3  Ar, = rs ( tL  ~ ; ) - ~ s ( t l ~ 5 z ) .  

where 

Hence, one may readily integrate with respect to t1 on ( 1 , ~ ) .  Subject to (7), the 
integration yields 

Both integrals appearing on the right-hand side of (1 1) are regular with respect to 6. 
Thus, at the leading order with respect to 6, all occurrences of ry , ( t ; ,  6;) and r,,($,, &) 
can be replaced by ryz(l, ti), and ryz(l, &), respectively (see Ashley & Landahl 1965). In 
this context, we note that since (1 1) presumes that the wake extends rectilinearly in the 
direction of the oncoming flow - which is a true description of the wake only when the 
flow remains unperturbed behind the wing, i.e. when 6 = 0 - equation (1 1) is a priori 
correct only to leading order with respect to 6. 

3. Arched wing 
The particular wing to be considered is shown in figure 1. It is assumed that the wing 

is so designed that, to within terms of order 6, the projection of its trailing edge on the 
(y,z)-plane is an arc of radius R and angle 2s. It is understood that s takes on values 
in the interval (O,x]; limiting cases s+O and s = rt correspond to the plane and ring- 
like (or duct-like) wings, respectively. 

Under the present assumptions, convenient coordinates are cylindrical, ( r ,  &, x), 
where 5, is used as the polar angle measured from the z-axis (see figure 1). Thus, with 

and e,(t,) = ey sin [, + e, cos (, e&J = ey cos 6, - e, sin t,, (12) 
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A - c i  

FIGURE 1. General arched wing. 

the respective local unit basis vectors, equations (2) and (3) take the form 

and 

where 

(ti, ti) E (- 1, l )  x (- s, s), and the ellipsis stands for the terms which are an order 
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higher with respect to 6 than us itself (cf. the last paragraph of the preceding section). 
In deriving (16) we have used the relation 

axs(61, <,>/a61 = b(t2L (18) 
immediately following from (1). 

4. Asymptotic solution for an arched wing 
We attempt to solve equation (lo), subject to (7), (15) and (16), asymptotically, using 

the reciprocal e = R-' as a small parameter. Toward this end we limit possible wing 
configurations by the following assumptions : 

(i) IxTE(.)-xTE(0)( is of the order unity on [-s,s]; 
(ii) if the wing forms an open arc, then s < n/2, Rs + 1, and b( +s) = 0. 

Note that under assumption (i) the wing is allowed to have a small sweep and to be 
positioned at a small sideslip angle relative to the flow. 

For any three functionsf, g ,  and h, analytic on (a, b), it is shown in the Appendix that 
if the interval (a, b) includes zero, and h(0) =!= 0, then 

2g(o) 2fTO)[ln e + lnlh(O)l+ 1 - 3 In 21 sin2 ( W )  +&I 
sin2($/2) + e2h(6) 2 ] 312 '6 = Eh2(0)- 

+fTb)lntan(b/4)+f(a)ln tan( -a/4)- sign([)lnltan(</4)1--dc+ df O(eIne), 
d6 

whereas 

Using these formulae, together with equations (7) and (8), equation (16) can be reduced 
to give the result 

where the ellipsis stands for higher-order terms both with respect to e and with respect 
to 6. 

Assume, subject to a posteriori verification, that p can be expanded into asymptotic 
series of the form 

(20) 
where each p,,,pl,pz,. .. is defined on [ - 1,1] x [ -s, s], and satisfies (7) and (8). 
Substitute (20) in (19); then substitute the resulting expression, together with (1 5) ,  in 
(10); finally, equate to zero the multipliers of eo, elne, el, ... . The first equation 
thereby obtained is 

p = po+elnepl+ep2+(elne)2p3+ ... , 
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it implies that p,, = O(S). Accordingly, to remain consistent with the preceding 
derivations - which are correct only to leading order with respect to 6 - we are 
bounded to neglect all contributions to po, pl, p2, ... which are of order 8'. As a 
consequence, two subsequent equations take the form 

ti) = o(S2)5 (22) 

In (21)-(23), ([;,[;)€(- 1 , 1 >  x (-s,s>. 
Equations (21)-(23) are similar, mutatis mutandis, to those obtained by Van Dyke 

(1975) for straight planar wings; they become identical in the limit where s-0. The 
effect of arching is explicit in the integral kernel on the right-hand side of (23), and 
implicit in the geometrical angle of attack on the right-hand side of (21). Equation (22) 
is noteworthy since p1 is known to be of order 6 (rather than S 2 )  for a comparably 
curved planar wing (see Thurber 1965; also, Guermond 1990). 

By analogy with the planar case, equations (21)-(23) imply that Prandtl's lifting-line 
theory (Prandtl, Wiesselsberger & Betz 1921) can be adopted for arched wings - with 
two modifications. One is that the wing (either in symmetric or asymmetric flight) 
should be presented by aplanar arched vortex positioned perpendicular to the direction 
in which the wake extends (in the present notation, the arc should be in the (y , z ) -  
plane); the other is that the (infinite) velocity induced by this vortex on itself should be 
disregarded. 

By prescribing that the derivative + ~ / i 3 [ ~  should vanish at the trailing edge and have 
an integrable singularity at the leading edge, integral equations (21) and (23) can be 
inverted (see Sohngen 1939; also Guermond, 1990) to obtain 

with (tl, 6;) E (- 1 , l )  x (-s, s). In deriving (25) we have used the fact that the right- 
hand side of (23) is independent of [;. 

5. Lift and drag coefficients of an arched wing 
In the present notation, the lift coefficient CL of the wing can be defined by 

where S is an arbitrary reference area. The pressure jump p appearing in the integrand 
can be found straightforwardly from (4), (16), (20) and (22); thus 

with subsequent terms of order S2 and (EIne)2S. At the same time, from (l), (12) and 
(131, 
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Hence, subject to (7), 

by (24) and (25). 
The induced drag coefficient C, of the wing is most conveniently found from energy 

considerations (see, for example, Ashley & Landahl 1965, pp. 135-136). To avoid 
repetition, we proceed directly from equation (7.41) of the last reference, which holds 
for both planar and non-planar wakes. Thus, in the present notation, 

With (6) and (1 3)-(15), equation (32) becomes 

As could be expected, in the limit where s+O, (33) reduces to the well-known 
expression for planar wings (see Ashley & Landahl 1965, p. 136). 

Substitute (20) in (33). For any m and n in {0,1,2, ...), 

This is easily proved: integrate by parts with respect to 6, on both sides of (34); then 
since each ,u, and ,urn satisfies (8), the identity of the resulting expressions becomes 
immediately apparent. 

Hence, with (22) and (31), asymptotic series for the drag coefficient can be reduced 
to the form 

6. A pseudo-elliptic arched wing 

with (pseudo-elliptic) chord distribution 
As an example, consider a non-cambered geometrically untwisted parachute wing 

(cos t2 tan (is))-’. (36) 

This wing will be assumed to execute a symmetric flight with mid-section positioned at 
angle of attack a, in which case 

for each 5, E [ - s, s], b(6,) = (tan2 (is) -tan2 

for each ( t l , t z )~ ( l ,  1) x (-s,s), &ays(51,t2)/Xl = -ab(tz)cost2. (37) 
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Note that when s -+ 0 the problem reduces to an elliptic untwisted non-cambered wing 
in symmetric flight. Also note the curvature-associated wing twist at LY > 0. 

Since the right-hand side of (37) is independent of El, integration in equation (30) is 
immediate; the result is 

Consequent integrations in equations (3 l), (29) and (35) are fairly straightforward, 
although lengthy; the final results are 

(39) 

(40) 

(41) 

po(1 7 5,) = 2zab(t,) cos 5,. (38) 

p2( 1 , 6,) = - 7c2ab(t2) (2 tan (is) cos2 (f[,))-' + O(a2), 
C, = 7c2aS-l(8R cos (is) tan (is) - 7c + . . .), 

C, = 7c3a2S-l{ 1 - 47cR-1 cot3@) [ 1 - (1 - tan' ( ~ s ) ) ~ "  - tan2 (is) + & tan4 (is)] + . . .). 

The last two equations can be brought into a more familiar form with 

S = 2R b(&) cos 6, dg, = 47cR tan (is) 
J - S  

the area, and 
A = 4R'S-l sin's = R sin2 s(7c tan (+s))-' 

(42) 

(43) 

the aspect ratio of the wing's projection on the (x,y)-plane. Thus, (40) and (41), 
respectively become 

C, = 2nc~ cos (is) (1 - 2A-l cos @) C O S ~  (is) + . . .), 
C2 c - ~ C O S ~  (is) { 1 + 4 ~ - l  COS, (is) cos (is) (cos~(+s) + 3 COS~((~S)) 

- 7cA 

(44) 

- 16A-1cos4(~s)cot(~s)cot(~s)[l -(1 -tan'(~s>)'/']+ ...}. (45) 

Note that in the limit where s+O, (44) and (45) reduce to the well-known classical 
results for high-aspect ratio straight elliptical wings (Van Dyke 1975, p. 168; Ashley & 
Landahl 1965, p. 137). Also note that the sectional circulation of the wing, as given by 
the value of the potential jump at the trailing edge, is 

p( 1, t2) = 2xab(g,) cos g, [ 1 - 2A-1 COS, (is) C O S ~  (is) (COS~ (&) cos g,)-l+ . . .], (46) 

by (20), (22), (38), (39) and (44). Essentially, equation (46) describes an elliptic 
distribution, somewhat weakened at the tips owing to both the intrinsic 'washout' (37) 
and the reduced effect of tip vortices at the mid-wing. 

7. A lifting cylindrical ring 
As another useful example, consider a straight cylindrical ring of constant chord (in 

which case b = 1, by definition) positioned almost perpendicular to the flow (see figure 
2). Let a be the angle between the normal to the plane of the ring and the x-axis. To 
satisfy assumption (i) of $4, the angle a will be assumed sufficiently small, so that Ra 
is of the order of unity. 

Under these circumstances, equations (37) and (38) hold. Consequent integration in 
(31) yields 

Accordingly, from (20), 
/A'( 1, <,) = - 7c2 a cos 5, + O(a2). (47) 

p(l,&J = ~ ~ ~ I C O S ~ ~ ( ~ - ~ T C R - ~ +  ...). (48) 
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A-A 

t ' t .  
A - i  

FIGURE 2.  A lifting ring. 

In other words, the sectional circulation is proportional to the local angle of attack. 
To obtain the lift and drag coefficients, substitute (38) and (47) in (29) and (35). 

Based on the projection area S = 4R of the wing, the results are 

C, =4x2aRS-1(l-~nR-1+.. .)  = n2a(l-~nR-'+ ...), (49) 

(50) 
1 

2n 
C, = 2n3a2S-'( 1 - nR-' + . . .) = - Ci R-l[ 1 + O ( K 2  In R)]. 

Both expressions agree with the comparable results of Belotserkovskii (1967) - see 
equation (4.34), subject to (4.25), (1.8) and (1.9), and the first paragraph on p. 133 of 
that reference. 

Appendix. Asymptotic expansions of the typical integrals 

Also, let, for each 6 in (a,b), 
Let (a ,  b )  be an open interval containing zero, and e be a small positive parameter. 

where f, g and h are analytic on (a ,  b). It will be assumed that h(0) =k 0. We seek an 
asymptotic expansion with respect to c of the integral 

A generic expansion of this type was studied by Guermond (1988, 1990). In either 
of the two references cited one can find a general paradigm to obtain any term in the 
expansion. However, with (A l) ,  in our opinion the first terms of the expansion can be 
found more easily by a direct approach which is described below. 



316 G. Iosilevskii 

Let h be an auxiliary small parameter, such that F 4 h 4 1. Divide the interval (a, 6) 
of integration into three parts (a, - A ) ,  (- A, A )  and (A ,  b), i.e. 

In the first (singular) term on the right-hand side of (A 3 ) ,  change the variable of 
integration to < = so as to obtain 

Note that 
2 

lim - sin (2) = c, 
F-0 

Expand the integrand in (A 4) in a Maclaurin series with respect to e. Since all integrals 
involving odd powers of < will vanish by symmetry considerations, such an expansion 
yields 

whence, upon integration, 

F([, e) d t  = - 2flO) (1 + In e + In Ih(0)l- In h -In 2) + 0 ( F  In F ) .  (A 7) 

We proceed now with the second and third integrals on the right-hand side of 
(A 3 ) .  Since F can be straightforwardly expanded in a Maclaurin series with respect 
to e both on (a, - A )  and on (h,b), it  immediately follows that 

1:, Fh (0) 

Further, integrate the right-hand side of (A 8) by parts to obtain 

- ~ ~ s i g n ( t ) ( I n t a n i ~ ~ ~ ) - d ~ + O ( n I n h ) .  df (A 9) 
d t  

Substitute (A 7)-(A 9) in (A 3) .  Noting that I (€)  should eventually be independent of 
A. the final result takes on the form 

+Xb)In(tanab)+Xa)In(tana(a()- sign(t)(Intani([/)-d[+O(elne). df (A 10) 
d t  
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By following the same steps as those leading to (A 7) and (A 8), it is easy to verify that 
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